кубоид


кубоид
cuboid

Русско-английский математический словарь. 2013.

Смотреть что такое "кубоид" в других словарях:

  • Рациональный кубоид — Рациональный кубоид[1] (или целочисленный кирпич) прямоугольный параллелепипед, у которого все семь основных величин (три ребра, три лицевых диагонали и пространственная диагональ) являются целыми числами. Иначе говоря, рациональный кубоид… …   Википедия

  • Целочисленный кубоид — Рациональный кубоид[1] (или целочисленный кирпич) прямоугольный параллелепипед, у которого все семь основных величин (три ребра, три лицевых диагонали и пространственная диагональ) являются целыми числами. Иначе говоря, рациональный кубоид… …   Википедия

  • Рациональный кирпич — Рациональный кубоид[1] (или целочисленный кирпич) прямоугольный параллелепипед, у которого все семь основных величин (три ребра, три лицевых диагонали и пространственная диагональ) являются целыми числами. Иначе говоря, рациональный кубоид… …   Википедия

  • Целочисленный кирпич — Рациональный кубоид[1] (или целочисленный кирпич) прямоугольный параллелепипед, у которого все семь основных величин (три ребра, три лицевых диагонали и пространственная диагональ) являются целыми числами. Иначе говоря, рациональный кубоид… …   Википедия

  • Эйлеров параллелепипед — Рациональный кубоид[1] (или целочисленный кирпич) прямоугольный параллелепипед, у которого все семь основных величин (три ребра, три лицевых диагонали и пространственная диагональ) являются целыми числами. Иначе говоря, рациональный кубоид… …   Википедия

  • Список моментов инерции — Приведён список моментов инерции[стиль!] массивного твёрдого тела различной формы. Момент инерции массы имеет размерность масса × длину2. Он является аналогом массы при описании вращательного движения. Не следует путать его с моментом инерции… …   Википедия

  • R-дерево — (англ. R trees)  древовидная структура данных (дерево), предложенная в 1984 году Антонином Гуттманом. Оно подобно B дереву, но …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.